

Genomic Medicine Launching our latest R&D publication

Dr. Christoph Nabholz, Head R&D Life & Health, 7 Nov 2017

Key facts about genomic medicine in clinical practice

Genomic medicine in medical practice

Swiss Re

Institute

"Pharmacogenomic"

Vincent Mooser, Jacques Fellay (CHUV University Hospital, Lausanne)

Number of letters (nucleotides) in the human	per of letters (nucleotides) in the human 4 (A, C, T, G) Number of genes in		20000
genome		Number of rare diseases due to a single gene defect	5000
Size of the human genome	3.2 billion letters, corresponding to the size of 1000 bibles	Cumulative prevalence of patients affected by rare diseases in the population	10%
Size of the coding portion of the human genome (exome)	40 million base pairs / 1.5% of the size of the genome	Number of highly penetrant clinically actionable genes ⁴	59
Portion of individual genome shared with reference genome	99.9%	Cumulative prevalence of carriers of highly penetrant clinically actionable mutations ⁵	3.5%
Number of variants in individual genomes (compared to a reference genome)	4 million	Risk increase for coronary artery disease among quintile of the population with highest genetic score	1.9 (90% increase)
Cumulative number of variants identified in 10000 genomes sequenced ³	150 million	based on common variants, compared to lowest quintile ⁶	
Costs of sequencing 1 human genome between 1990 and 2001	USD 2.5 B	Number of drugs with pharmacogenetic/genomic in FDA label*	170
Costs of sequencing 1 human genome in 2016	USD 1000	Number of pharmacogenomic applications with proven clinical utility (outside oncology) ⁷	2
Number of PubMed hits while querying for – "Precision medicine" – "Personalized medicine" – "Genomic medicine"	Query on Jan 5th, 2017 (number of hits for years 2014–2016) – 11 230 (5 835) – 8 343 (4 604) – 5 941 (3 688)		

- 15773 (3469)

Rapid evolution of genetic testing technologies observed since the human genome sequence in 2003

Full genome sequencing has become affordable

Molecular-profiling has become key to the development of personalised therapy

Personalised medicine

Understanding of genetic variability between individuals and using such personalised information for targeted healthcare

> Source: Herbst R et al. N Engl J Med 2008; 359: 1367

Swiss Re Institute

5

Liquid biopsy is a novel cancer blood test that has the potential to revolutionize cancer care and provide personalized therapy guidance

Liquid biopsy in Oncology

Nicola Aceto (University of Basel)

Key applications

- CTC counts for good vs bad prognosis assessment
- Ex vivo culture and testing of drug susceptibility
- Molecular analysis for patient stratification
- Understanding the biology of the metastatic process

Key applications

- Quantification of minimal residual disease
- Patient stratification
- Companion diagnostic / treatment eligibility
- Early cancer detection

Liquid biopsy provides the molecular understanding of the cancer and provides the hope to better manage cancer treatment through:

metastatic relans

Real-time monitoring of treatment responses and resistance to therapy

Detecting cancer relapse

Development of targeted therapies

Stratification and therapeutic decision making

Better understanding of tumour evolution

Used as a cancer screening tool liquid biopsy has the potential to lead to overdiagnosis and impact cancer products

Liquid biopsy – a new blood test for cancer challenges the insurance industry Giselle Abangma, Christoph Nabholz, Florian Rechfeld, John Schoonbee (Swiss Re)

Heritable modification of the genome that does not change the DNA sequence

Transgenerational epigenetic inheritance: a paradigm shift in biology and medicine

Johannes Bohacek, Isabelle Mansuy (ETH and University of Zurich)

Gene editing could be used to cure genetic disease but is it ethical?

CRISPR – hacking the biological hard drive

Thomas Wildhaber, Séverine Rion, Christoph Nabholz (Swiss Re)

iii) Swiss Re

Human gene manipulation – Hopes and Fears

Big Hope: ≻ Cure of genetic diseases

Big Fear: ➤ Designer baby

Therapeutic approaches

International law – Embryonic stem cell research

Country	Research permitted / prohibited	Country	Research permitted / prohibited
Australia	\checkmark	Japan	\checkmark
Canada	\checkmark	Netherland	×
Denmark	\checkmark	Norway	×
China	\checkmark	Poland	×
France	highly restricted	Singapore	✓ no specific law
Germany	×	South Korea	\checkmark
Iceland	\checkmark	Spain	\checkmark
India	\checkmark	USA	(✓) no gov. funding
Italy	×	UK	\checkmark

Insurance impact

Casualty

- Biohacking
 - Modified organisms may escape and lead to ecosystem impact
- Genetic Modified Organism
 - Regulatory restriction may lead to food recall
- Medical malpractice
 - Fatalities and health consequences may lead to liabilities

Life & Health

- New promising high tech therapies
 - Small patient groups with very high cost to health care system
- Risk of developing diseases
 - Good genes turn into bad ones and cause devastating diseases e.g. cancer
- Enhanced life span
 - Higher life expectancy will have pricing implications to pension, life insurance and disability insurance

Legal notice

©2017 Swiss Re. All rights reserved. You are not permitted to create any modifications or derivative works of this presentation or to use it for commercial or other public purposes without the prior written permission of Swiss Re.

The information and opinions contained in the presentation are provided as at the date of the presentation and are subject to change without notice. Although the information used was taken from reliable sources, Swiss Re does not accept any responsibility for the accuracy or comprehensiveness of the details given. All liability for the accuracy and completeness thereof or for any damage or loss resulting from the use of the information contained in this presentation is expressly excluded. Under no circumstances shall Swiss Re or its Group companies be liable for any financial or consequential loss relating to this presentation.

Dr Christoph Nabholz | Genomic Medicine | 7 Nov 2017 16